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Abstract. Roll coating is distinguished by the use of one or more gaps between rotating
cylinders to meter a continuous liquid layer and to apply it to a flexible substrate.  Of the two
rolls that make a forward-roll coating gap, one is often covered by a layer of deformable
elastomer.  Liquid carried into the gap deforms the resilient roll cover.  The complete
understanding of the coupling between the liquid flow and roll cover deformation is vital to
the optimization of this widely used coating method.  Earlier works on deformable roll
coating analyzed the action with both one-dimensional and plane-strain two-dimensional
elastic models of the roll cover deformation.  However, rubber and rubber-like materials used
as roll covers do not behave purely elastically.  Carvalho and Scriven (1996) analyzed the
performance of deformable roll coating nips by means of lubrication approximation and a set
of independent, radially oriented viscoelastic elements, the classic spring-dashpot
combination from linear viscoelasticity theory.  In order to test the accuracy of this simple
approach and to evaluate the relationship between the empirical constants used in the model
to the relevant physical parameters, a complete, two-dimensional, viscoelastic model has to
be used.  In this work, the flow between a rigid and a deformable rotating roll was examined
by solving the complete Navier-Stokes system coupled with a plane-strain viscoelastic model
of the roll cover deformation.  The stress at each location of the roll cover was evaluated by
an integral of the deformation along the material  path of the point being analyzed.  The
model permits multiple relaxation time without extra computational effort.  The equation
system was solved by the Galerkin / finite element method.  Results show how the viscoelastic
properties of roll cover affect the performance of deformable roll nips.
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1. INTRODUCTION

Roll coating process is characterized by liquid flow in a narrow gap or nip between
rotating cylinders or rolls.  The liquid is metered and then applied to a continous flexible
substrate.  Despite the variety of configurations, any such process can be broken into different



parts, as described by Coyle et al. (1986).  In order to understand the whole process, one
needs to study the individual flows between pairs of rolls in forward and reverse mode.

The flow between two rigid rolls has been extensively studied in the past.  However,
usually one of the rolls of each gap is covered with a resilient layer that deforms during
operation.  The main purposes of using a deformable roll cover are to avoid the risk of
clashing two hard rolls and to obtain much thinner films than ordinary can be achieved with
rigid rolls.  The deformation of the roll cover affects the shape of the boundaries of the
coating flow.  That flow generates pressure and viscous stresses, which deforms the roll
cover.  Hence, the viscous liquid flow and the deformation of the roll cover are coupled,
which characterizes an elastohydrodynamic action.

Coyle (1988) analyzed this problem using Reynolds’ equation for the liquid flow and a
spring model to describe the roll cover deformation.  In order to evaluate the limitations of the
simple spring model and to relate the empirical spring constant to the roll cover properties,
Carvalho and Scriven (1997) analyzed this situation by a complete two dimensional model.
The liquid flow was described the Navier-Stokes equation and the deformation of the roll
cover was described by a plane-strain, non-linear elastic constitutive equation.

Rubber covers used on deformable roll coating do not behave purely elastically.  Their
responses depend to a great extent on the stress history of the cover.  Although this is well
known, the roll cover materials are typically characterized only by an indentation test.
Carvalho and Scriven (1996) extended the one-dimensional deformation model to include the
viscoelastic behavior of rubber roll covers.  The radially-oriented elements they used were
simply a combination of springs and dashpots.  To give an accurate description of the
deformation of the compliant layer, a complete two-dimensional, finite deformation,
viscoelastic formulation has to be used.  This was done by Bapat and Batra (1984), who
analyzed the deformation of a rubber cover roll indented by a rigid cylinder.  They used the
constitutive relation proposed by Christensen (1980).  Their work was on dry contact between
cylinders, i.e. there was no liquid flow, as in the case analyzer here.

In this work, the flow between a rigid and a deformable rotating rolls fully submerged in
a liquid pool is studied.  The flow is described by the complete Navier-Stokes equation and
the roll cover deformation by a non-linear viscoelastic model, the same used by Bapat and
Batra (1984) in dry contact.  The goals were to study the effect of the viscoelastic behavior of
the roll cover on the gap performance.
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Figure 1:  Sketch of flow between two rolls fully flooded in a liquid pool:  (a) Detail of the nip region
in positive gaps, i.e. clearance of 2H0 between undeformed rolls; (b) Detail of nip region in negative
gaps, i.e. interference of 2H0 between undeformed rolls.



2. DEFINITION OF THE SYSTEM OF EQUATIONS

The liquid flow between a rigid and a deformable roll, both rotating and fully submerged
in a pool is sketched in Fig.1.  Roll A is rigid and roll B is covered with a viscoelastic rubber
layer.  The roll surfaces move in the same direction in the gap region.  If the center-to-center
distance is larger than the sum of the roll radii, there is a clearance between the undeformed
roll surfaces; such situations are called positive gaps.  If the center-to-center distance is
smaller than the sum of the roll radii, the rolls would interfere were they undeformable; such
situations are called negative gaps.  For convenience, both the clearance and interference
between undeformed rolls are called 02H , as sketched in Fig.1.

2.1. Equations of Liquid Flow and Solid Deformation

The governing equations give rise to a free boundary problem, because the position of the
deformable roll surface is unknown a priori.  The basis of treating such problems is presented
by Kistler and Scriven (1984), Sackinger et al. (1996), and Carvalho and Scriven (1997).

Figure 2 shows the domain of calculation.  There is a liquid domain �L, where the
differential equations that describe the liquid motion are solved, and a solid domain �S,
where the differential equations that describe the solid deformation are solved.
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Figure 2:  Sketch of domains for flow between a rigid and a deformable roll.

The motion of the liquid is described by the Navier-Stokes equation and continuity
equation of incompressible flow

0     and     0 ���������� vvv �     (1)

together with appropriate boundary conditions.  �  is the density of the liquid and �  is
represents the Cauchy stress tensor.

The rubber is taken to be incompressible and the acceleration and body forces of the
resilient layer are neglected.  With these assumptions, the differential equations that describe
the roll cover deformation are

1F ���� )det(  and  ��     (2)

where �  is the Cauchy stress tensor and F  is the deformation gradient tensor.  To complete
the formulation, the stress has to be related to the deformation by an appropriate constitutive
relation.  Carvalho and Scriven (1997) used the Mooney-Rivlin equation:

1BBI �	
	
��� 10�



where �  is a scalar, pressure-like function that is related to the incompressibility constraint,
just like the pressure in an incompressible liquid is related to the continuity equation.  0	  and

1	  are the elastic constants of the material.
In this work, the viscoelastic behavior of rubber materials is taken into account.  The

response of this type of material to a stress relaxation test is shown in Fig. 3.  In particular, a
non-linear viscoelastic equation proposed by Christensen (1980) is used.  The stress is a
function of the entire deformation history:
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TFFB �  is the left Cauchy-Green tensor, � �IFFE T �� 2
1 , and  �  is the relaxation time

constant of the material.  The component inside the time integral represents the memory effect
of the roll cover material.  The intensity of the viscoelastic behavior can be measured by the
amout of stress relaxation, that is proportional to the ratio )/( 011 	
		 , and by the time that

it takes the stress to completely relax, that it proportional to � .  The elastic response is
recovered when the 0)/( 011 �	
		  and ��� .
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Figure 3:  Response of a viscoelastic material to a stress relaxation test.

The boundary conditions used for the fluid flow and solid deformation are the usual ones:
no-slip and no-penetration at solid walls, force balance at the resilient solid / liquid interface.
The synthetic inlet and outlet boundaries are placed far enough from the region of interest that
the liquid pressure is taken to be constant in both locations and the stress state of the roll
cover is assumed  to be completely relaxed upstream the roll nip.  This hypothesis is valid if
the relaxation time of the roll cover rubber is shorter than the time that it takes a material
point to travel from the exit of the nip back to entrance.  If this assumption is not valid, the
problem becomes transiente and it is not analyzed here.

The time integral of the deformation history can be transformed to a space integral, as
indicated below:
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where )(sV  is the velocity of the point at each position s .  The details of the kinematic of the
roll cover is presented by Carvalho and Scriven (1997).



The dimensionless parameters that govern this situation are:

� Reynolds Number �� /Re VR� ,

� dimensionless undeformed clearance or interference RH /0 ,

� dimensionless roll cover thickness RL / ,
� Elasticity Number RVEs )/( 10 ��� 
� ,

� elastic constant ratio )/( 101 ��� 
 ,

� Deborah Number RVDe /�� , and
� speed ratio BA VVS /� .

2.2. Solution Method

The position of the deformable roll suface is unknown a priori, it is part of the solution.
In order to solve this free boundary problem using standard techniques, the set of differential
equations posed in the unknown physical domains �L and �S have to be transformed to an
equivalent set defined in a suitable known reference domain �0, as illustrated in Fig. 4.  The
transformation used here to map the liquid physical domain �L into the reference domain �0,
represented by �

�
��in Fig. 4, relies on elliptic partial differential equations to relate points of

both domains.  Details of this procedure are given elsewhere (de Santos, 1990; Carvalho and
Scriven, 1997).  For the solid domain, it is convenient to map the equation system defined in
the deformed configuration to the zero-stress configuration � , that serves as the reference
configuration.  This is accomplished by using Piola's transformation.  From the numerical
point of view, it is convenient to integrate the equations of both liquid and solid domain over
the same reference domain �0.  For that, a mapping from �0 to �  has to be constructed.  It is
represented by �

�
  in Fig. 4.  Unlike �

�
 , this mapping is known and it simply represents a

change of domain of integration.
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Figure 4:  Mappings from the liquid domain to the reference domain (�L - ���� from the current solid
configuration to the zero-stress state (�S  - ��� and from the zero-stress state to the computational reference
domain (� � ����



The system of partial differential equations is solved by the Galerkin / Finite Element
Method.  The weighting functions associated with the momentum, mesh generation in the
liquid domain, and deformation of solid domain equations were biquadratic; and the ones
associated with the incompressibility constraint of both the liquid and solid were piecewise
linear discontinuous functions.

The resulting non-linear set of equations was solved by Newton's method, which
converges quadratically close to the solution. At each Newton iteration, the linear system of
equation was solved by a multifrontal method, e.g. UMFPACK.

Unlike differential viscoelastic models, the integral model of eq.(3) to describe the
viscous behavior of rubber like materials does not increase the number of degrees of freedom
of the problem, when compared to the elastic description.  However, the banded structure of
the Jacobian matrix is lost, because the stress at a given point depends on the deformation
along the entire pathline of the point. The domain of liquid flow was divided into 150
elements, and the domain of solid deformation, into 100 elements.  The number of
simultaneous equations was 5034.

3. RESULTS

The flow through the deformable gap was evaluated at different clearances and
interfercences RH /0 , elasticity number RVEs )/( 10 ��� 
� , Deborah number

RVDe /�� , and elastic constant ratio )/( 101 ��� 
 .  The speed ratio S and the

dimensionless roll cover thickness were kept constant, e.g. 1�S  and 05.0/ �RL .
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Figure 5: Dimensionless flow rate predictions at different gaps and elasticity numbers.  The continuous line
represents the solution obtained with rigid rolls.

Figure 5 shows the dimensionless flow rate VRQq 2/* �  as a function of the center-to-

center position, characterized by RH /0 , at different elasticity numbers.  Deborah number

approached infinity, i.e. the rubber was considered an elastic material.  At large enough



positive gaps, the curves for different elasticity numbers merge into a single line that matches
the rigid-roll predictions, because the liquid pressure is not high enough to deform the rubber
cover.  As the rolls are pushed against each other, the flow rate falls.  At negative gaps, the
flow rate sensitivity to roll position becomes relatively small.  This is very important for roll
coating operations.  It means that the variation of the liquid layer thickness caused by roll run-
out (out-of-roundness) is much smaller when a deformable roll is used and it diminishes as
the rolls are pressed against each other.  At a fixed center-to-center distance, the softer the
roll, i.e. the larger the elasticity number, the larger the flow rate.  Figure 6 shows the liquid
and solid domains at different gaps (positive and negative).  If the rolls are far apart, the
pressure is not strong enough to deform the roll cover.  As the rolls are pressed against each
other, the roll cover deforms more and more.  At large interference (negative gaps), the liquid
layer between the two rolls is so thin as to be almost impreceptible in the plot.
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Figure 6:  Sequence of deformable roll deformation at different positive and negative undeformed gaps.

The effect of the elastic constant ratio on the dimensionless flow rate is shown in Fig. 7.
The predictions were obtained at 3

0 102/ ����RH , 410 ��Es , and 210��De .  As the stress

relaxation becomes larger, i.e. as the elastic constant ratio rises, the amount of liquid that
flows through the gap increases.  The effect of the Deborah number is illustrated in Fig. 8.
The predictions shown are at 3

0 102/ ����RH , 410 ��Es , 1.0)/( 011 �
 ���  and 0.3.  If

the time response of the rubber material is very slow, i.e. at large Deborah, the prediction
approaches that of an elastic material.  As the reponse time of the rubber falls and Deborah
number decreases, the flow rate between the rolls increases because the rubber cover has
enough time to relax to a lower level of stresses.

The effect of viscoelasticity, as represented by Deborah number, on the pressure
distribution is illustrated in Fig. 9.  As the Deborah number falls, the rubber has more time to
relax and consenquentely the pressure peak falls and shifts upstream.  Scheuter and Pfeiffer



(1969) observed experimentally such shifting of the pressure distribution in dry rolling with
rubber-covered rolls.
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Figure 7:  Effect of intensity of stress relaxation, characterized by the elastic constant ratio, on the flow rate
through through the roll nip.
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4. FINAL REMARKS

Flow between a rigid and a deformable roll was analyzed.  The viscous liquid flow and
the elastic deformation of the roll cover are coupled, which constitutes na elastohydrodynamic
action.
A complete two-dimensional formulation of the situation was used for both the liquid flow
and for the viscoelastic roll cover.  The liquid flow between the rotating rolls was described
by the Navier-Stokes system of equations.  The deformation of the compliant roll cover was
described by a plane-strain model of non-linear incompressible viscoelastic material.  The
formulation can be improved by considering a multi-relaxation time constant model, which
give a better description of elastomeric materials.
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The results show how the different parameters, including the viscoelastic properties of the
rubber roll cover, can affect the performance of the roll nip.  An important conclusion is that
rolls with the same hardness, an elastic property obtained from a steady indentation test, can
have completely different performance due to their viscoelastic behavior.
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